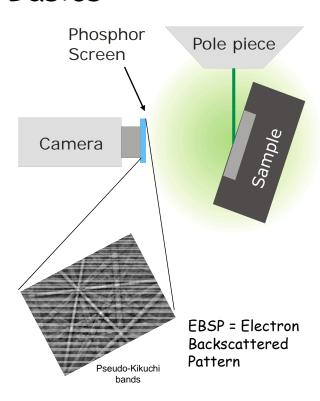
EBSD

Marco Cantoni 021/693.48.16

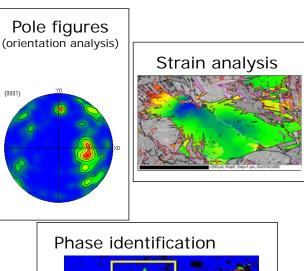
Centre Interdisciplinaire de Microscopie Electronique CIME


Microscopie électronique: EBSD

Marco Cantoni

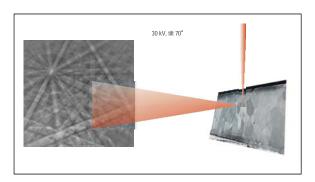
EBSD Basics

- Quantitative, general microstructural characterization in the SEM based on diffraction effects!
- Orientation measurements, phase identification
- Near-surface technique
 - Using diffraction patterns originating 20 nm 100 nm below the surface
 - Surface preparation is critical
- Materials analyzed
 - Crystalline materials
 - Metals, ceramics, minerals
 - Conductors (and insulators)



Uses of EBSD

microstructural data


Phase identification

Microscopie électronique: EBSD

Marco Cantoni

How EBSPs are obtained?

Tilt 70° - Spot mode - 30 kV - 10 nA

Phosphor screen + CCD camera

EBSD: electron diffraction in the SEM: 2 step process!

- 1) Electrons of the incident beam spread beneath the surface in all direction due to elastic interactions (backscattered electrons):

 small divergent source of electron behind (~ 100 nm) the sample surface.
- 2) These electrons are diffracted by crystal planes according to the Bragg condition.

Sample preparation

■ Requirements

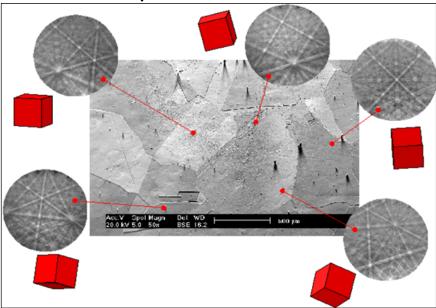
The backscattering volume (100 nm) below the surface sample must be crystalline and without excessive plastic deformation.

Problems: → plastic deformation due to mechanical polishing

→ foreign layers (oxide)

→ internal strain

Preparations methods

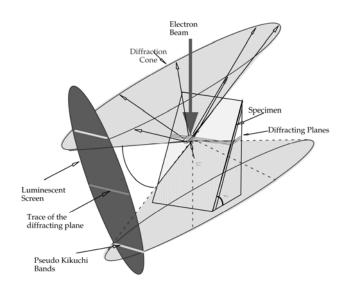

- ✓ Mirror quality polishing (\rightarrow 0.25 μ m diamond grade), and:
 - → chemical-mechanical polishing (silica or alumina suspension)
 - → electro-polishing or chemical polishing/etching
 - → ion-milling or plasma etching
- ✓ cleaved surface, growth surface
- ✓ Insulating materials
 - \rightarrow carbon coating (< 100 Å) (degrade pattern quality)
 - → low-vacuum SEM (a few Pa)

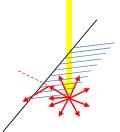
Microscopie électronique: EBSD

Marco Cantoni

Acquisition of EBSPs

Positioning of beam on tilted surface and analyse the EBSD pattern!

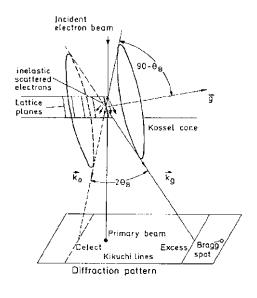

EBSD consist of Kikuchi bands corresponding to the various diffracting planes. Intersections of these bands correspond to crystal zone axis.


The geometrical arrangement of Kikuchi bands depends of **crystal symmetry** and **crystal orientation**.

Diffraction of backscattered electrons

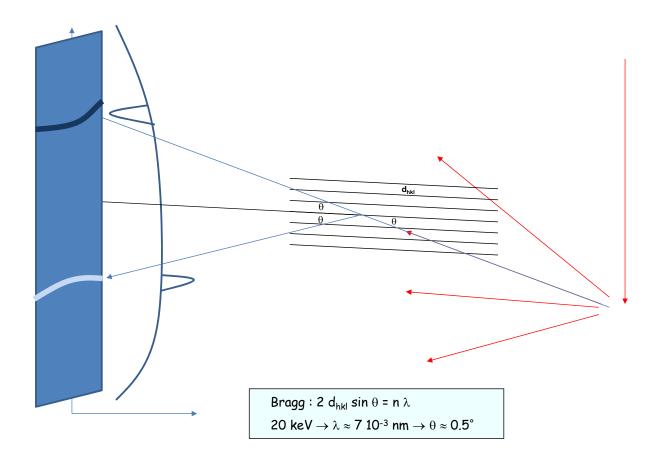
Incident beam

1) elastically scattered electrons (forward scattered / back scattered)


- 2) Diffraction by crystal planes
 - = Bragg diffraction

Microscopie électronique: EBSD

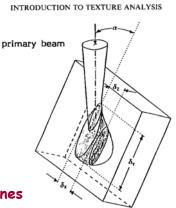
Marco Cantoni


Kikuchi lines (bands) in TEM

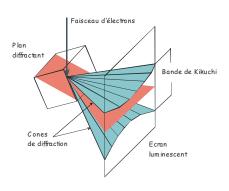
Thick sample: inelastic scattering followed by elastic scattering (= diffraction)

Microscopie électronique: EBSD

Marco Cantoni



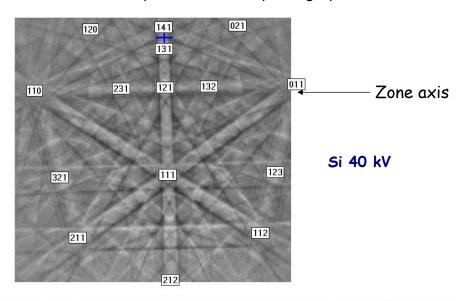
Formation of EBSPs


- Backscattering: due to mainly elastic ($\Delta E < 200 \text{ eV}$) interactions (plasmons, phonons) the electron beam is spread in all directions.
 - The emission volume corresponds to a small divergent source of electrons below the sample surface (100 nm).
 - Scattering by crystallographic planes: 2 diffraction cones

Bragg : 2
$$d_{hkl} \sin \theta$$
 = n λ 20 keV $\rightarrow \lambda \approx 7~10^{-3}$ nm $\rightarrow \theta \approx 0.5^{\circ}$

- Gnomonic projection on the screen: 2 hyperbolas (Kikuchi bands). The middle of a band corresponds to the trace of the diffracting plane.
- Relatives intensities: structure factors (dynamical effects)

bulk sample (SEM)

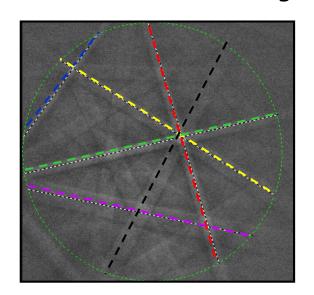

Indexation of EBSPs

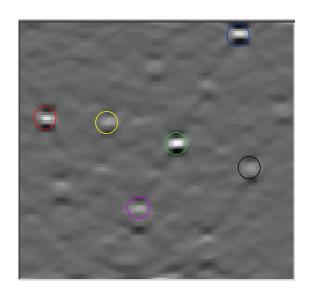
Each band = diffraction of a family of planes

<u>Intersections of bands</u> = intersections of planes = zone axes

Angles between bands = angles between planes

<u>Position of bands</u> directly linked to the crystallographic orientation




Microscopie électronique: EBSD

Marco Cantoni

Hough transform

EBSP: the computer doesn't manage to distinguish between the grey levels

Hough transform : it is easier for the computer to detect the clear spots and dark areas top and bottom

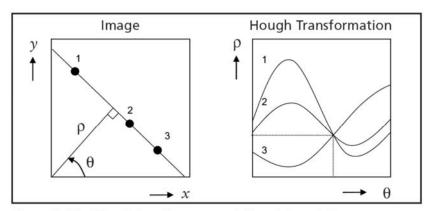
Line positions with a common intersection (zone axis) will lie along a line/sine curve

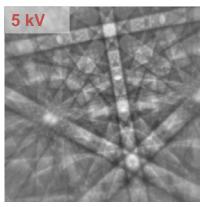
Hough transform

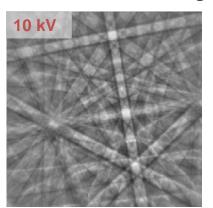
The transform between the coordinates (x, y) of the diffraction pattern and the coordinates (ρ, θ) of Hough space is given by (Figure 8):

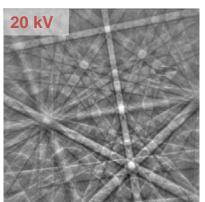
$$\rho = x \cos \theta + y \sin \theta \tag{3}$$

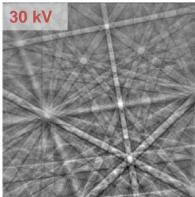
A straight line is characterized by ρ , the perpendicular distance from the origin and θ the angle made with the x-axis and so is represented by a single point (ρ,θ) in Hough space. Kikuchi bands transform to bright regions in Hough space which can be detected




Figure 8: The Hough transform converts lines into points in Hough space


Microscopie électronique: EBSD


Marco Cantoni



Influence of accelerating voltage

Si [100], same WD and camera length


The phosphor screen efficiency drops at reduced voltages.

Bragg: 2 $d_{hkl} \sin \theta = n \lambda$

 θ = width of bands

EBSP vs. voltage and tilt

Microscopie électronique: EBSD

Marco Cantoni

Spatial and Angular accuracy

0.1 - 1° relative ≈ 2° absolute

Limited by :

- ✓ Accuracy on the localization of Kikuchi bands (Hough, ...).
- The weak signal/noise ratio of the images, and blur of Kikuchi bands.
- ✓ Geometrical fluctuations of the conditions of diffraction, and calibration.
- absolute accuracy: sample position in the chamber.

20 nm - 1 μm

Limited by the overlapping of diffraction patterns in the vicinity of a boundary

Depend on :

- √ interaction volume (energy and Z)
- ✓ size of the beam spot (probe current, focus, astigmatism)

■ How to improve resolution :

FEG SEM: higher brightness, stable and reproducible beam.

Applications of EBSD

EBSD patterns depend mainly on

- crystal structure (symmetry)
- crystal orientation

■ Micro-crystallography

Determination of zone-axis symmetries:

1, 2, 3, 4, 6, m, 2mm, 3m, 4mm ou 6mm

Seldom used

- → identification of the crystal point group.
- → Possible indeterminations: (1 / -1, 3 / -3, 4 / -4, 6 / -6)

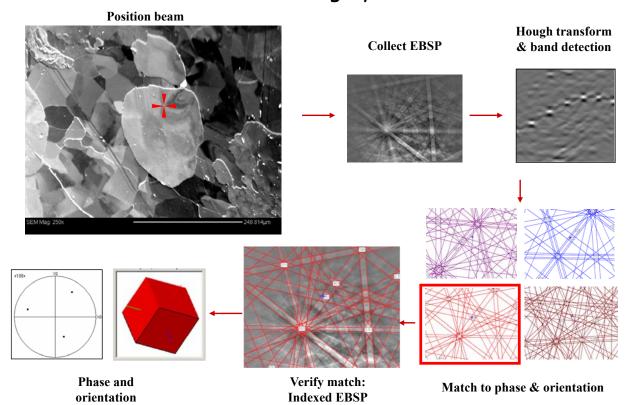
Orientation measurements

Main application

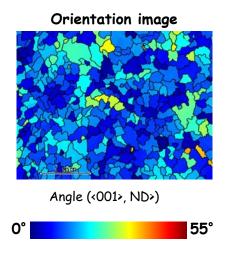
Phase identification / discrimination

- ✓ Chemical analysis (EDS, WDS)
- ✓ Rough lattice parameter measurement (~5%, depend on calibration)
- ✓ Symmetry analysis, or investigation with a crystallographic data base.

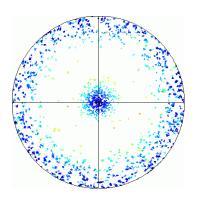
	X-ray	EBSD (SEM)	TEM
Sample preparation Ease of use Speed Spatial resolution	easy	easy/moderate	difficult
	moderate	easy	difficult
	minutes	minutes	hours
	~ 0.1 mm	~ 0.1 μm	~ 1 nm


Microscopie électronique: EBSD

Marco Cantoni



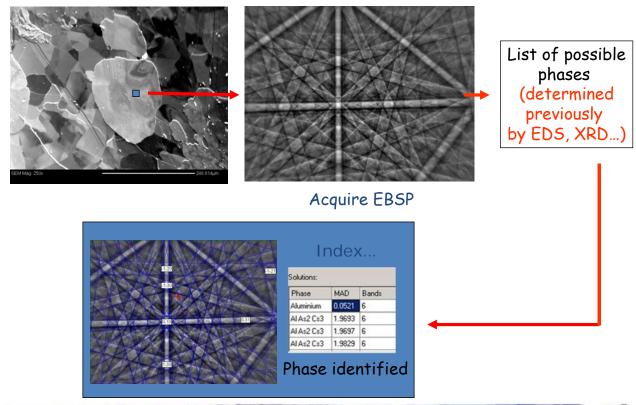
Document Oxford Instruments


Indexing Cycle

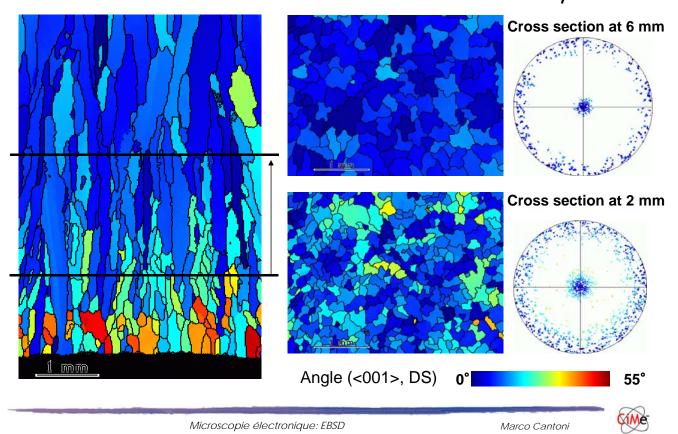
Data analysis and orientation representations Directional solidification of a Ni-base alloy

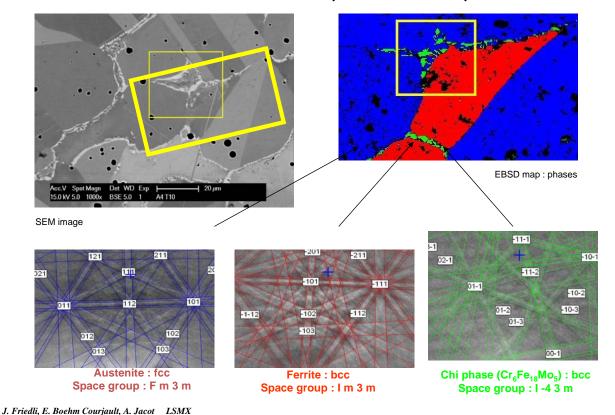
The scale is coloured considering the misorientation between the points and the <001> direction oriented along the normal direction (i.e. Z)

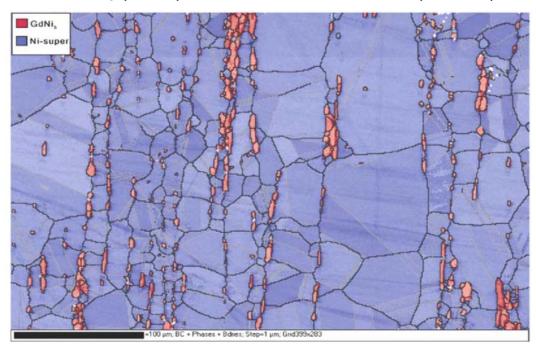
Pole figure


→ Stereographic projection

Microscopie électronique: EBSD


Marco Cantoni

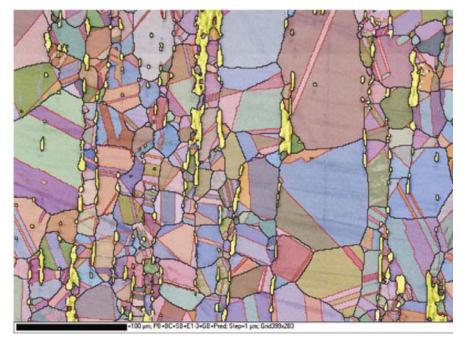

Phase identification


1. Directional solidification of a Ni-base alloy

2. Identification of chi phase in a duplex steel

3. GdNi₅ precipitates in a Ni-based superalloy

Phase map: Ni-alloy (blue), GdNi₅ (red, 7% of area)


Document Oxford Instruments

Microscopie électronique: EBSD

Marco Cantoni

4. GdNi₅ precipitates in a Ni-based superalloy

Orientation map (black = grain or phase boundary; red = twins) $GdNi_5$ precipitates have all the same orientation

